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Abstract. In the present article, we propose a method for generation
of rules on genes mediating the development of human lung adenocarci-
noma. The method involves the application of cyclic loess normalization
technique followed by the incorporation of the fuzzy sets low, medium
and high. Linguistic rules are generated on the gene expression values.
The system has been successfully applied on a microarray gene expres-
sion data consisting of expression values of 7129 genes in 10 normal and
86 tumor samples. In our results we have found that nine genes, includ-
ing RPLPO, ADH1, UGB, FMO2, HBA2, SFTPA1, SFTPA2, HBB are
the most significant mediating the development of lung adenocarcinoma.
The results are in accordance with a number of earlier investigations.

1 Introduction

Lung cancer continues to be the most common cause of cancer related mortal-
ity in men and women. The treatments of lung cancer are primarily based on
the broad classification of tumors into small cell, non-small cell types and his-
tological subtyping. The heterogeneity of lung cancer patients at each disease
stage with respect to outcome and treatment response suggests that additional
subclassification and substaging remains possible.

Recent studies [12, 6, 18] involving gene expression profiling of clinical spec-
imens have had a profound impact on cancer research. In some examples [12,
6], correlations have been made between the expression levels of a gene or set of
genes and clinically relevant subclassifications of specific tumor subtypes. These
results have shown that true molecular classification and substaging of multiple
tumor types may be possible, leading to taking effective measures in prognosis
and patient management. Microarray Technology can be used to correlate the
gene-expression patterns with numerous clinical parameters including patient
outcome to better predict tumor behavior in individual patients [18]. Analysis
of lung cancers using array technologies has identified subgroups of tumors that
differ according to tumor types and histological subclasses, and to lesser extent,
survival among adenocarcinoma patients.
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Fuzzy set theory is capable of handling uncertainty in the gene expression
values arising due to incompleteness, imprecision, noise and experimental errors.
The notion of fuzzy sets has been used in the domain of gene expression analy-
sis. These include identifying interacting genes that fit a known “fuzzy” model
of gene interaction by testing all combinations of gene expression determining
profiles [29], a list of differentially expressed genes [7], a knowledge-based model
of Zhang et. al. [31] to determine the influence of genes on classification of a sam-
ple into a tumor category, transforming gene expression values into qualitative
descriptors using a set of linguistic rules involving fuzzy logic [29], fuzzy infer-
encing for classification of tumor samples [20], application of fuzzy ARTMAP
to identify normal and tumor patients [4]. Recently, Sokhansanj et. al. [27] have
demonstrated an approach with exhaustive search for fuzzy gene interaction
models that best fit transcription measurements by microarray technology.

In this article, we have applied linguistic fuzzy sets on gene expression data
of lung adenocarcinoma to identify a set of genes mediating the development
of lung adenocarcinoma. The method involves a normalization method of cyclic
loess [11] to reduce the variation among the expression levels of the gene over
different samples. Then we have represented the whole-normalized data set in
form fuzzy linguistic variables [23]. In this way, we have found three different
classes corresponding to low, medium and high on gene expression values, for
normal and tumor samples separately. In the next step, we have performed the
matching operation with normal to tumor samples, which has led to identify 293
genes that have changed significantly from normal samples to tumor samples.
Finally, rules are generated using the technique involving confidence factor for
these genes. We report here the nine significant rules corresponding to nine
genes among these 293 genes that have changed their expression values most
significantly from normal samples to tumor samples. The gene expression data
we have considered here are oligonucleotide arrays containing gene expression
profiles for 10 normal and 86 lung adenocarcinoma including 67 stage I and 19
stage III tumor samples on 7129 genes.

2 Related Work

Zhang has proposed a rule discovery procedure that is based on prior knowl-
edge of the influence of each gene for classification of a sample into a tumor
category [31]. Only (gene, expression) descriptors that are consistent with the
classification are considered as the antecedent of the rule. For example, if some
parameter is positive for gene A, then only (A, HIGH) will be retained. On the
other hand, a negative value of the parameter indicates that only (A, LOW)
would be retained. This is certainly arbitrary and depends on the coding for the
class variable. The magnitude of the parameter is ignored in this rule generation
process. All possible descriptor sets are considered to compose the rules in the
initial step. For example, if parameter for genes A and B are both positive in the
logistic regression model, the corresponding rules are (A, HIGH), (B, HIGH),
(A, HIGH), and (B, HIGH). Every rule thus constructed is considered for
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elimination using the impact of its removal in the number of misclassifications.
If there is no change or the number of misclassifications goes down, then the rule
is eliminated.

A set of heuristic rules in the fuzzy logic framework to transform expression
values into qualitative descriptors are evaluated in [29]. This model is used to
find triplets of activators, repressors and targets in a gene expression data set.
The predictions made by the algorithm agree well with experimental data. The
algorithm can also assist in determining the function of uncharacterized proteins
and is able to detect a substantially a larger number of transcription factors than
that could be found at random. This technique extends current techniques such
as clustering to allow the users to generate a connected network of genes using
only expression data.

An investigation has been made using information on importance of genes in
classification using fuzzy inferencing. This is similar to that of other classifiers,
but simpler and easier to interpret [20]. The fuzzy inference system has the theo-
retical advantage that it does not need to be retrained when using measurements
obtained from a different types of microarrays.

Interpretation of classification models derived from gene expression data is
usually not simple. Rather, it is an important aspect in the analytical process.
The performance of small rule-based classifiers is based on fuzzy sets and dis-
tribution of data [32]. The classifiers result in the rules that can be readily
examined by biomedical researchers. The fuzzy logic-based classifiers compare
favorably with logistic regression in all data sets they have considered.

Sokhansanj demonstrated an approach with exhaustive search for fuzzy gene
interaction models that best fit transcription measurements obtained by microar-
ray technology [27]. Applying an efficient, universally applicable data normaliza-
tion and fuzzification scheme, the search converged to a small number of models
that individually predict experimental data within an error tolerance. Although
gene transcription levels are only used to develop the models, they include both
direct and indirect regulation of genes. Biological relationships in the best-fitting
fuzzy gene network models successfully recover direct and indirect interactions
predicted from previous knowledge to result in transcriptional correlation. Fuzzy
models that fit on data set were used for robust prediction of another experi-
mental data set for the same system. Linear fuzzy gene networks and exhaustive
rule search are the first steps towards a framework for an integrated modelling
and experiment approach to high-throughput “reverse engineering” of complex
biological systems.

Advances in molecular classification of tumors may play a central role in
cancer treatment. Using gene expression profiles obtained by cDNA microarrays,
a neural network model known as simplified fuzzy ARTMAP has been developed
that is able to identify normal and tumor patients [4]. Furthermore, it makes
the distinction among patients with molecularly different forms of carcinoma
without any previous knowledge of those subtypes.
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3 Proposed Method

In this section, we describe the method of generating linguistic rules on genes
mediating the development of lung adenocarcinoma. The method has two parts.
In the first part, we have used cyclic loess normalization technique [11] for trans-
forming expression values in different normal samples of a gene into one value.
Similarly, expression values in different lung adenocarcinoma samples of a gene
into one value. The entire method is described in details below.

3.1 Normalization

The need of normalization arises naturally when we deal with experiments in-
volving multiple arrays. There may be two broad characterizations one could use
for the type of variation in different arrays: interesting variation and obscuring
variation. Interesting variation deals with the biological differences, for example
[14], when large differences in the expression level of particular genes between
a diseased and a normal source are observed. On the other hand, obscuring
variation is introduced during the process of carrying experiment with different
samples of either normal or diseased type. The purpose of normalization is to
deal with this obscuring variation.

Here we use cyclic loess method [11] to normalize the data set for normal
lung samples and as well as tumor samples. This approach is based upon the idea
of the M versus A plot, where M is the difference in log expression values and
A is the average of the log expression values corresponding to a pair of samples.
An M versus A plot for normalized data should show a point cloud scattered
about the M = 0 axis.

This is due to the fact that the expression values of the pair of samples
become closer on application of a normalization method. In particular, for any
two arrays 4, j with probe intensities xy; and xp; where £ = 1,...,p is the
probe index, we calculate My = logy(zki/zk;) and Ar = 1/2logy(zrixy;). A
normalization curve is fitted to these M versus A plot using loess. Here we fit a
parabolic curve. The fits based on the normalization curve are M, and thus the
normalization adjustment is given by (M}, —]\ka). This adjustment is apportioned
equally to xy; and ;.

To deal with more than two arrays, the method is extended to look at all
distinct pair wise combinations. The normalization is carried out in a pair wise
manner, recording an adjustment for each of the two arrays in each pair. After
looking at all pairs of arrays we have a set of adjustments that can be applied
to the set of arrays. Then we repeat the process until the difference in the
expression values becomes less than some predefined threshold. Typically only 5
or 6 complete iterations through all pair wise combinations are needed to achieve
an acceptable result. After getting the normalized values of the genes, we have
taken mean of these normalized values of each gene to represent a gene by a
single expression value. The steps of the method [11] are provided below for the
sake of clarity.

For each gene, do
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STEP 1: Choose pair wise samples.
STEP 2: Compute M}, and Ay, for each pair using the above method.

STEP 3: If there are n samples for a gene, there should be <;) pairs, so as

n
2

STEP 4: Fit M}, with respect to Ag. Here we use the parabolic curve fitting
algorithm. In this algorithm we use the formula My, = a+ bAy, + cAi%. So for a

to get ( number of M and Aj.

2
of (Mj, — My,) values. We call these (My — M) values as an adjustment.
STEP 5: Record these adjustments for each sample and compute the resultant
adjustment of each sample.
STEP 6: Update the old log expression value for each sample by the following
formula,

set of Ay values, we can get a set of M, values. Finally we can get (n) number

new logy T = oldlog, x;1, + resultant adjustment

STEP 7: Repeat Step 1 to Step 6 until the differences between the log ex-
pressions values are less than some threshold values specified by the analyzer
(i.e. repeat those steps until the log expression values of different samples are
close enough).

3.2 Grouping (into classes) based on fuzzy sets

In conventional statistical methods, the absolute expression pattern of genes is
presented to a system for computations. However, in real life situations, gene
expression pattern may be uncertain and/or incomplete. In such cases it may
become convenient to use linguistic variables such as low, medium, high, very
high, or more or less to replace numerical feature information [23].

The proposed model is capable of handling absolute expression pattern i.e,
numerical and inexact i.e, linguistic forms of the input data. Any input expres-
sion value can be described through a combination of membership values in the
linguistic property sets low, medium and high.

Each input expression value x;, of jth gene of kth sample in quantitative
form can be expressed in terms of membership values to each of the three lin-
guistic properties low, medium and high. Therefore for n samples, we have an
n-dimensional gene expression pattern x; = [z;1, % a,...,2jn]T for jth gene,
which may be represented as a 3n dimensional vector

Vi = [Uiow(®51), Unedium (1), Unign (€1); - - -, Unign (xjn)]" - (1)

Here Ujpw(xjk) is membership value of jth gene with expression value zj in
kth sample, to the fuzzy set low. Hence in trying to express input x; with the
linguistic properties, we are effectively dividing the dynamic range of expression
value into three overlapping partitions called low, medium, and high for each
gene. Note that, for reducing complexity, we have already applied normalization
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technique (described in Section 2.1) for transforming expression values in various
samples of a gene into one value. This makes the dimension of x; to be one and
hence the dimension of v; to be three. That is, for a jth gene we have only one
expression value ;.

We now describe the formulation of the membership functions corresponding
to the fuzzy sets low, medium and high. These three membership functions are
termed as Ujow, Umed, Unign corresponding to the fuzzy sets low, medium and
high. Here we have considered triangular membership functions for modelling
the fuzzy sets. Thus, the membership function Uy, is defined as

Ulow(mj) =1, Zf Zj < Tmin
=1+ (.’Ej - xmzn)/(xmzn - Cmed)7 Zf Clow < Zj < Cmed (2)
=0, otherwise

Similarly, Upmeq and Upign are defined as

Umed(xj) = (xmin - x])/(mmzn - cmed)7 Zf Clow < €5 < Cmed

= (Tmas — xj)/(xmax — Cmed); 1f Cmed < Zj < Chigh (3)
=0, otherwise
Unign(z;) = 1, if xj > Chign
=1 + (LL'] - xmaz)/(xmaz - cmed)7 Zf Cmed < xj < Lmax (4)
=0, otherwise

Here x4, and x,,, denote the upper and lower bounds of the observed range
of the gene expression values. The parameters are computed as follows:

Cmed = (xmzn + (Emaz)/2
Clow = (Cmed - xmzn)/Q + Tmin
Chigh = (xmax - cmed)/2 + Cmed

The basic nature of these membership functions is as follows: (i) Maximum
value of each function is 1. (ii) Minimum value of each function is 0. (iii) The
membership functions corresponding to low and medium, cut at the point for
which Ujpw = Upmea = 0.5. Similar is the case for Upeq and Upign such that at
the point of intersections of the membership functions corresponding to medium
and high, Upmeq = Upigr, = 0.5. (iv) The membership value corresponding to a
gene expression value to a fuzzy set is maximum at the center of the fuzzy set and
decreases as it is away from the center of the fuzzy set. It may be noted that one
may use other membership functions for modelling the fuzzy sets low, medium
and high, keeping the similar basic nature of the membership functions. The
choice of c-values automatically ensures that one of the membership values Uy,
Umea or Upign of each gene in the corresponding three dimensional linguistic
space should be greater than 0.5, and among the other two one should be zero.
This allows a gene to have a strong membership to at least one of the properties
low, medium, high. So after representing the genes with three linguistic variables,
we group the genes based on their membership values into low, medium or high.
That is, a gene with membership value to low greater than 0.5 is considered,
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as a member of the fuzzy set low. Thus we have got three classes of genes in
low, medium and high. This process is executed both on normal and tumor
samples separately. However, the values of the parameters (i.e, c-values) of the
membership functions, for both normal and tumor samples are computed, based
on the normal lung samples.

3.3 Rule generation based on linguistic variables

The membership values of various genes in both normal and tumor samples are
used for rule generation in if-then form in order to justify any decision on some
genes reached. These rules describe the extent to which a gene is responsible for
causing adenocarcinoma in lung. The rules generated are in the form of if-then,
where the antecedent is formed by two conjunctive clauses — one corresponding
to the linguistic representation of a gene in normal samples and the other corre-
sponding to that in tumor samples. The consequent part of the rule represents
whether the tumor sample is adenocarcinomic or not. In order to generate the
antecedent (“if”) part of a rule, we compute confidence factor CONF' as given
by

CONF = %[vm”m + (1/(cl = 1)) % (2 (Vmaz — v;))], 0 < CONF <1 (5)

where j = 1,2, ..., ¢cl; ¢l being the number of classes. (Here ¢l = 3, as the classes
are low, medium and high.) Here vpq, = max?lzl{vj}, vj is the membership
value to jth class and n,,., indicates the number of occurrences of vp,q; in
vector v. Note that CONF takes care of the fact that the difficulty in assigning
a particular gene to a fuzzy class depends not only on the highest entry in the
output vector v,q, but also on its differences from the other entities v; . It is
seen that the higher the value of CONF, the lower is the difficulty in deciding a
fuzzy set to which the gene belongs, and hence greater is the degree of certainty
of the output decision. Based on the value of CONF the system makes the
following decisions heuristically while generating a rule. Let vy = ¥pq, such
that the pattern under consideration belongs to the class Cy. We have: (i) if
(0.8 < CONF}, < 1.0) then very likely fuzzy set Cj. (ii) if (0.6 < CONF}, < 0.8)
then likely fuzzy set Cj. (iii) if (0.4 < CONF}, < 0.6) then more or less likely
fuzzy set Cy. (iv) if (0.1 < CONF}, < 0.4) then not unlikely fuzzy set Cj. (v) if
(CONF}, < 0.1) then unable to recognize fuzzy set Cj,.

4 Results

In this section, the effectiveness of the proposed method is demonstrated on lung
adenocarcinoma gene expression data [1,2, 5].

4.1 Description of the data set

The data set is obtained by microarray experiments of Affymetrix Corporation
for Ann Arbor tumors and normal lung samples [1,2,5]. In this data set, there
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are expression values of 7129 genes (more specifically, Affymetrix probe-sets) for
86 lung tumor and 10 normal lung samples[19, 28].

Among these 86 tumor samples 67 samples corresponding to stage I and 19
to stage III tumors. There are also 10 neoplastic lung samples. The data set was
trimmed of genes expressed at extremely low level. That is, genes were excluded
if the measure of their 75th percentile value was less than 100 [2]. Array to
array variation in the overall distribution of gene expression values detected by
quantile-quantile plots was removed by applying a quantile normalization using
a linear spline as a monotone transformation [5]. The gene expression profile
of each tumor was normalized to the median gene expression value among all
the samples. Features on the oligonucleotide arrays representing the genes in the
individual tumors found as outliers were carefully reviewed to confirm expression
levels and exclude artifacts. More details on this data set is found in [1, 2, 5].

4.2 Analysis of the results

The above data contains expression value of 10 normal samples of 7129 genes.

So there are (10

9 ) pairs, i.e., 45 pairs for each gene.

Table 1. Computation of resultant adjustment. Ad; stands for the adjustment for ith
sample.

Samplel | Sample2 | Sample3 | Sampled | Samples | Sample6 | Sample? | Sample8 | Sampled [Samplel0
+ay,2/2[ —ay 2/2| —ag 3/2|+ag4/2| —az5/2[+ag /2| —az 7/2 | +an /2| —ag 9/2 |+az 10/2
—a1,3/2| fag3/2| +a1,3/2 [ —az4/2][+asg,5/2| —a5,6/2| —a3,7/2 | —a5,8/2| taz 9/2[—a5,10/2
—a1,4/2| —az.4/2| taza/2 | +a1,4/2]+a35/2| +taz6/2| +aa,7/2|+a38/2| +tag,9/2[—a6,10/2
+a1,5/2 | +ag5/2| —ag5/2| —ag5/2| —a15/2| —ag 6/2| ta5 7/2 | —ayg8/2| +a5.9/2 [+a7 10/2
—a1,6/2| —a2,6/2| —a3,6/2| taa6/2| tas,6/2 | ta1,6/2] +a6,7/2 | —a6,8/2| +ae,9/2[—ag,10/2
—a1,7/2| +ag 7/2 | ta37/2| —ag,7/2| —a5,7/2| —ag,7/2 | +a1,7/2 | tar,8/2| —az7,9/2 [+ag 10/2
—a1,8/2| —azg/2| —az g/2| taq8/2| ta58/2 | tag,8/2| —ar,g/2 | +a1,8/2| +ag9/2[—aq,10/2
+a1,0/2 [ +ag,9/2| —ag 9/2| —a4,9/2| —a5,9/2| —ag,9/2| tar,9/2| —ag9/2| —a1,9/2|—a3,10/2
+a1,10/2[—a2.10/2[+ae3,10/2[+ea,10/2[+a5,10/2[+a6,10/2[—a7.10/2[+a8,10/2[—29.10/2]—a1,10/2
Ady Ady —Ads Ady —Adg Adg —Ady —Adg —Adg Adg

We have first of all, applied normalization algorithm described in Section
2.1. According to the algorithm, we have consider pairwise samples and calculate
adjustment iteratively until the expression values of the two samples become very
closed. This is depicted in Table 1. In Table 1, a; » indicates the adjustment value
of pair, sample 1 and sample 2. We have distributed this adjustment value to
the sample 1 and sample 2. Here the log expression value of sample 1 is less than
sample 2. So we divided the adjustment, say a; 2, such that sample 1 got +a; 2/2
and sample 2 got —aq 2/2. In this way each sample has 9 values after distribution.
Finally, we calculate the resultant adjustment by adding those values including
sign for each sample. Now for each sample, we update the old log expression
value of a gene by adding resultant adjustment of the corresponding sample.
This completes one iteration. After 5 or 6 iterations we have got the normalized
value of each sample for a gene. That is, log expression value of the 10 samples
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become close enough. In this way we normalized 7129 genes for normal and
tumor samples. After normalization, we have performed mean operation on the
values of the genes. So ultimately we represented each gene with a single value.
This would help us a lot for further analysis as well as for implementation with
respect to the complexity of the problem is concerned.

The membership values of 7129 genes to the classes low, medium and high
were then calculated using equations (2)-(4), and grouped into three fuzzy classes
based on these membership values. In case of normal samples there are 6288
genes in class low, 835 genes in class medium, 6 genes in class high. Similar
steps were followed for the 86 tumor samples using the parameter values al-
ready computed for normal samples. In the case of tumor samples, there are
6251 genes in class low, 871 genes in class medium, 7 genes in class high. It is
interesting to note that number of genes of corresponding to the classes of nor-
mal and tumor samples changed significantly. In order to determine the extent
of changes, we have compared these classes, i.e., between (loWnormals (0Wtumor ),
(mediumypormar, MeditMiymor)s (Nighnormal; Mightumor). Based on this com-
parison, we have identified a set of 293 genes, each of which has changed the
corresponding class. That is, one of these 293 genes may belong to the class
low for normal samples, but is included in the class other than low for tumor
samples.

Finally, we applied the rule generation technique based on the algorithm
specified in Section 2.3 on these 293 genes to generate 293 rules. Among these
293 genes, we have reported the rules for 9 genes that have changed significantly
from normal to tumor samples. These rules are provided in Table 2. For example,
the rule for the gene FMO2 is as follows:

If FMO2 is very likely in class medium for normal samples and very likely
in class low for tumor samples then the tumor sample is adenocarcinomic.

The results are validated by some earlier investigations on these genes. That
is, these genes were found to be responsible for lung adenocarcinoma by these
investigations. These include the references in [3] for RPLO, [10,24] for ADHI,
[22,26] for UGB, [17] for FMO2, [8,13] for HBA2, [30, 15,25] for SFTPAI, [21]
for SFTPA2, [16,9] for HBB.

5 Conclusions

In this article, we have described a rule generation method for identifying a few
genes responsible for a specific disease. First of all, the expression values for genes
in different samples were normalized to remove sources of variation between the
arrays. Here we have used a cyclic loess normalization method [11] on normal
and tumor samples. After normalization, we have performed the mean operation
that is mainly used to represent a gene by a single log expression value. We have
then applied the concept of fuzzy sets to classify the genes into three fuzzy
classes, viz., low, medium, and high. Incorporation of fuzzy set theory makes
the system capable of handling uncertainty in the gene expression values arising
due to incompleteness, imprecision, noise and experimental errors. Now we have
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Table 2. Rules corresponding to the nine most significant genes mediating the devel-
opment of lung adenocarcinoma. The consequent parts of all these rules are “the tumor
sample is adenocarcinomic”.

Gene Name|Antecedent clauses corresponding to
Normal Tumor

RPLPO Likely medium | Very likely high
NULL  |Very likely medium|Very likely high
ADH1 Likely medium | Very likely low
UGB Likely medium | Very likely low
FMO2 |Very likely medium| Very likely low
HBA2 Likely medium | Very likely low
SFTPA1 Very likely high | Likely medium
SFTPA2 Very likely high | Likely medium
HBB Very likely high | Very likely low

performed matching operation with normal classes with the tumor classes. After
matching we have identified the genes that moved significantly from one class of
normal to another class of tumor or vice versa.

Applying the above method on a lung adenocarcinoma data set containing
gene expression values, we have grouped those genes into three different classes
low, medium, high. The low, medium and high classes for normal consist of 6288,
835 and 6 genes respectively. Similarly, the low, medium and high classes of tumor
consists of 6251, 871 and 7 genes respectively. We have compared all three classes
of normal with low, medium and high classes of the tumor. On this comparison,
we have found 293 genes that are significantly changed their expression level
from normal to the tumor. Among these 293 genes, we have reported nine genes
that have changed significantly based on the rule we have got. These 9 genes
include RPLPO, ADH1, UGB, FMO2, HBA2, SFTPA1, SFTPA2, HBB. Among
those 9 genes we have found, the gene HBB that have moved most significantly
from class high of normal to the class low of the tumor. We have reported that
this gene is a down-regulated gene that is mediating the development of lung
carcinoma. Therefore, over or under expression of these 9 genes are responsible
for the development of lung carcinoma. These results have been validated by a
number of earlier investigations.
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